Advertisements
Advertisements
प्रश्न
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
विकल्प
a2 – b2
b2 – a2
a2 + b2
b – a
उत्तर
b2 – a2
Explanation;
(a cot θ + b cosec θ)2 = p2
(b cot θ + a cosec θ)2 = q2
p2 – q2 = a2 cot2θ + a2 cot2θ + 2ab cot θ cosec θ – (b2 cot2θ + a2 cosec2θ + 2ab cot θ cosec θ)
= (a2 – b2) cot2θ + (b2 – a2) cosec2θ
= (a2 – b2) (cosec2θ – 1) + (b2 – a2) (cosec2θ)
= (a2 – b2) cosec2θ – (a2 – b2) – (a2 – b2) cosec2θ
= b2 – a2
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
The value of sin2 29° + sin2 61° is
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.