Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
उत्तर
L.H.S. = `(1 + sinA)/cosA + cosA/(1 + sinA)`
= `((1 + sinA)^2 + cos^2A)/(cosA(1 + sinA))`
= `(1 + sin^2A + 2sinA + cos^2A)/(cosA(1 + sinA))`
= `(1 + 2sinA + 1)/(cosA(1 + sinA))`
= `(2(1 + sinA))/(cosA(1 + sinA))`
= 2 sec A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
If `sec theta + tan theta = x," find the value of " sec theta`
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ