Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
उत्तर
L.H.S. = `(1 + sinA)/cosA + cosA/(1 + sinA)`
= `((1 + sinA)^2 + cos^2A)/(cosA(1 + sinA))`
= `(1 + sin^2A + 2sinA + cos^2A)/(cosA(1 + sinA))`
= `(1 + 2sinA + 1)/(cosA(1 + sinA))`
= `(2(1 + sinA))/(cosA(1 + sinA))`
= 2 sec A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
Write the value of tan1° tan 2° ........ tan 89° .
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ