Advertisements
Advertisements
प्रश्न
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
उत्तर
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
`sqrt((1 + sin theta)/(1 - sin theta)) = sqrt(((1 + sin theta)(1 + sin theta))/((1 - sin theta)(1 + sin theta))`
= `sqrt((1 + sin theta)^2/(1 - sin^2 theta)`
= `sqrt((1 + sin theta)^2/(cos^2 theta)`
= `(1 + sin theta)/cos theta`
`sqrt(((1 - sin theta))/((1 + sin theta))) = sqrt(((1 - sin theta))/((1 - sin theta)) xx ((1 + sin theta))/((1 - sin theta))`
= `sqrt((1 - sin theta)^2/(1 - sin^2 theta)`
= `sqrt((1- sin theta)^2/(cos^2 theta)) = (1 - sin theta)/cos theta`
L.H.S. = `sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta)`
= `(1 + sin theta)/cos theta + (1 - sin theta)/cos theta`
= `(1 + sin theta + 1 - sin theta)/cos theta`
= `2/cos theta`
= 2 sec θ
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
Show that tan4θ + tan2θ = sec4θ – sec2θ.