मराठी

If Sec θ + Tan θ = M, Show that M 2 − 1 M 2 + 1 = Sin θ - Mathematics

Advertisements
Advertisements

प्रश्न

If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`

बेरीज

उत्तर

`(m^2 - 1)/(m^2 + 1)`

⇒ `((sectheta + tantheta)^2 - (sec^2theta - tan^2theta))/((sectheta + tantheta)^2 + (sec^2theta - tan^2theta))`

⇒ `(sec^2theta + tan^2theta + 2sectheta tantheta - sec^2theta + tan^2theta)/(sec^2theta + tan^2theta + 2sectheta tantheta + sec^2theta - tan^2theta)`

⇒ `(2tantheta(tantheta + sectheta))/(2sectheta(tantheta + sectheta))`

⇒ `tantheta/sectheta = sintheta/(costheta sectheta)`   `(∵ tantheta = sintheta/costheta)`

⇒ `sintheta/(costheta xx 1/costheta) = sin theta`  `(∵ costheta = 1/sectheta)`

Hence, proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) Abroad Set(2)

संबंधित प्रश्‍न

Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`


Prove the following trigonometric identities:

`(1 - cos^2 A) cosec^2 A = 1`


Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Prove the following identities:

`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`


sec4 A − sec2 A is equal to


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×