Advertisements
Advertisements
प्रश्न
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
उत्तर
`(m^2 - 1)/(m^2 + 1)`
⇒ `((sectheta + tantheta)^2 - (sec^2theta - tan^2theta))/((sectheta + tantheta)^2 + (sec^2theta - tan^2theta))`
⇒ `(sec^2theta + tan^2theta + 2sectheta tantheta - sec^2theta + tan^2theta)/(sec^2theta + tan^2theta + 2sectheta tantheta + sec^2theta - tan^2theta)`
⇒ `(2tantheta(tantheta + sectheta))/(2sectheta(tantheta + sectheta))`
⇒ `tantheta/sectheta = sintheta/(costheta sectheta)` `(∵ tantheta = sintheta/costheta)`
⇒ `sintheta/(costheta xx 1/costheta) = sin theta` `(∵ costheta = 1/sectheta)`
Hence, proved
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
sec4 A − sec2 A is equal to
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.