Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
उत्तर
L.H.S. `=(cosec A)/(cosecA - 1) + (cosecA)/(cosecA + 1)`
= `(cosec A (cosec A + 1) + cosec A (cosec A - 1))/((cosec A - 1) (cosec A + 1))`
= `(cosec^2 A+cosec A + cosec^2 A-cosec A)/((cosec A)^2 - (1)^2)`
= `(2 cosec^2 A)/(cosec^2 A - 1)`
= `(2 cosec^2 A)/(cot^2 A)` ...(∵ cosec2 A – 1 = cot2 A)
= `2(1/cancel(sin^2A))/(cos^2A/cancel(sin^2A))`
= `2/cos^2A`
= 2 sec2 A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If tanθ `= 3/4` then find the value of secθ.
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
tan θ × `sqrt(1 - sin^2 θ)` is equal to: