Advertisements
Advertisements
प्रश्न
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
उत्तर
L.H.S. = `1/(1 - sinA) + 1/(1 + sinA)`
= `(1 + sinA + 1 - sinA)/((1 - sinA)(1 + sinA))`
= `2/(1 - sin^2A)`
= `2/cos^2A`
= 2 sec2 A = R.H.S.
APPEARS IN
संबंधित प्रश्न
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If 2sin2β − cos2β = 2, then β is ______.