Advertisements
Advertisements
प्रश्न
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
उत्तर
Given,
m = a sec A + b tan A and n = a tan A + b sec A
m2 – n2 = (a sec A + b tan A)2 – ( a tan A + b sec A)2
= a2 sec2 A + b2 tan2 A + 2ab sec A tan A – (a2 tan2 A + b2 sec2 A + 2ab sec A tan A)
= sec2 A (a2 – b2) + tan2 A (b2 – a2)
= (a2 – b2) [sec2 A – tan2 A]
= (a2 – b2) [Since sec2 A – tan2 A = 1]
Hence, m2 – n2 = a2 – b2
APPEARS IN
संबंधित प्रश्न
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2