Advertisements
Advertisements
प्रश्न
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
उत्तर
L.H.S. = `sqrt((1 - sinA)/(1 + sinA))`
= `sqrt((1 - sinA)/(1 + sinA) xx (1 + sinA)/(1 + sinA))`
= `sqrt((1 - sin^2A)/(1 + sinA)^2)`
= `sqrt(cos^2A/(1 + sinA)^2)`
= `cosA/(1 + sinA)` = R.H.S.
APPEARS IN
संबंधित प्रश्न
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
If 1 – cos2θ = `1/4`, then θ = ?
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`