Advertisements
Advertisements
प्रश्न
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
उत्तर
We have,
`sin^2 θ+1/(1+tan^2θ)= sin^2θ+1/(sqc^2θ)`
=` sin^2θ+(1/secθ)^2`
=` sin^2 θ+cos^2θ`
=` 1`
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
If tan θ = `13/12`, then cot θ = ?
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
If sin A = `1/2`, then the value of sec A is ______.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?