मराठी

What is the Value of (1 + Cot2 θ) Sin2 θ? - Mathematics

Advertisements
Advertisements

प्रश्न

What is the value of (1 + cot2 θ) sin2 θ?

थोडक्यात उत्तर

उत्तर

We have, 

`(1+cot^2 θ)sin^2θ= cosec^2θxxsin^2θ` 

`= (1/sinθ)^2 xx sin^2θ` 

= `1/sin^2θxxsin^2θ` 

`=1`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.3 | Q 3 | पृष्ठ ५५

संबंधित प्रश्‍न

`(1+tan^2A)/(1+cot^2A)` = ______.


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


Prove the following identities:

`cosecA + cotA = 1/(cosecA - cotA)`


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`


If tanθ `= 3/4` then find the value of secθ.


Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`


Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×