Advertisements
Advertisements
प्रश्न
What is the value of (1 + cot2 θ) sin2 θ?
उत्तर
We have,
`(1+cot^2 θ)sin^2θ= cosec^2θxxsin^2θ`
`= (1/sinθ)^2 xx sin^2θ`
= `1/sin^2θxxsin^2θ`
`=1`
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If tanθ `= 3/4` then find the value of secθ.
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ