Advertisements
Advertisements
प्रश्न
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
उत्तर
`sec^2 theta (1+ sin theta ) (1- sin theta)`
=`sec^2 theta (1 - sin^2 theta)`
=`1/ cos^2 theta xx cos^2 theta`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
(i)` (1-cos^2 theta )cosec^2theta = 1`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
The value of sin2 29° + sin2 61° is
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3