Advertisements
Advertisements
प्रश्न
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
उत्तर
We have,
`(1+tan^2θ)(1-sinθ)(1+sin θ)=(1+tan ^2 θ){(1-sinθ)(1+sinθ)}`
= `(1+tan^2θ)(1-sin^2θ)`
We know that,
`sec^2θ-tan^2θ=1`
⇒ `sec^2 θ=1+tan^2θ`
`sin^2 θ+cos ^2θ=1`
⇒ `cos^2 θ=1sin^2θ`
Therefore,
`(1+tan^2θ)(1-sin θ)(1+sin θ) = sec^2 θ xxcos^2θ`
= `1/cos^2θ xx cos^2 θ`
=` 1`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Write the value of cosec2 (90° − θ) − tan2 θ.
cos4 A − sin4 A is equal to ______.
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Prove that sin4A – cos4A = 1 – 2cos2A
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1