Advertisements
Advertisements
प्रश्न
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
उत्तर
`(sinA - cosA)(1 + tanA + cotA)`
= `sinA + (sin^2A)/cosA + cosA - cosA - sinA - (cos^2A)/sinA`
= `(sin^2A)/cosA - (cos^2A)/sinA`
= `secA/(cosec^2A) - (cosecA)/(sec^2A)`
APPEARS IN
संबंधित प्रश्न
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
The value of sin2 29° + sin2 61° is
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
If sin θ = `1/2`, then find the value of θ.
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
Prove that sec2θ – cos2θ = tan2θ + sin2θ