Advertisements
Advertisements
प्रश्न
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
उत्तर
L.H.S = `(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
= `((sin "A" - sin "B")(sin "A" + sin "B") + (cos "A" - cos "B")(cos"A" + cos "B"))/((cos"A" + cos "B")(sin"A" + sin "B"))`
= `(sin^2"A" - sin^2"B" + cos^2"A" - cos^2"B")/((cos"A" + cos"B")(sin"A" + sin"B"))`
= `((sin^2"A" + cos^2"A") - (sin^2"B" + cos^2"B"))/((cos"A" + cos"B")(sin"A" + sin"B"))`
= `(1 - 1)/((cos"A" + cos"B")(sin"A" + sin"B")) = 0/((cos"A" + cos"B")(sin"A" + sin"B"))`
= 0
L.H.S = R.H.S ⇒ `(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")` = 0
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
If sec θ = `25/7`, then find the value of tan θ.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Choose the correct alternative:
sec 60° = ?
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
(1 – cos2 A) is equal to ______.