मराठी

Prove that ((1 + Sin θ - Cos θ)/( 1 + Sin θ + Cos θ))^2 = (1 - Cos θ)/(1 + Cos θ) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.

बेरीज

उत्तर

LHS = `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2`

⇒ `(1 + sin^2 θ + cos^2 θ + 2(sin θ - cos θ - sin θ. cos θ))/(1 + sin^2 θ + cos^2 θ + 2(sin θ + cos θ + sin θ. cos θ)`

= `(1 + 1 + 2 (sin θ - cos θ - sin θ. cos θ))/( 1 + 1 + 2((sin θ + cos θ + sin θ. cos θ)`

= `(2 (1 + sin θ - cos θ - sin θ. cos θ))/(2( 1 + (sin θ + cos θ + sin θ. cos θ))`

= `( 1 + sin θ - cos θ( 1 + sin θ))/(1 + sin θ + cos θ( 1 + sin θ))`

= `((1 + sin θ)(1 - cos θ))/((1 + sin θ)( 1 + cos θ))`

= `(1 - cos θ)/( 1 + cos θ)`

= RHS

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 18 Trigonometry
Exercise 2 | Q 50
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×