Advertisements
Advertisements
प्रश्न
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
उत्तर
LHS = `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2`
⇒ `(1 + sin^2 θ + cos^2 θ + 2(sin θ - cos θ - sin θ. cos θ))/(1 + sin^2 θ + cos^2 θ + 2(sin θ + cos θ + sin θ. cos θ)`
= `(1 + 1 + 2 (sin θ - cos θ - sin θ. cos θ))/( 1 + 1 + 2((sin θ + cos θ + sin θ. cos θ)`
= `(2 (1 + sin θ - cos θ - sin θ. cos θ))/(2( 1 + (sin θ + cos θ + sin θ. cos θ))`
= `( 1 + sin θ - cos θ( 1 + sin θ))/(1 + sin θ + cos θ( 1 + sin θ))`
= `((1 + sin θ)(1 - cos θ))/((1 + sin θ)( 1 + cos θ))`
= `(1 - cos θ)/( 1 + cos θ)`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`