Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
उत्तर
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
= `(1 + cosA)/(1 - cosA).(1 + cosA)/(1 + cosA)`
= `((1 + cosA)^2)/(1 - cos^2A) = (1 + cosA)^2/sin^2A`
= `[(1 + cosA)/sinA]^2 = [1/sinA + cosA/sinA]^2`
= `(cosecA + cotA)^2`
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`