Advertisements
Advertisements
प्रश्न
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
उत्तर
L.H.S. = (1 – tan A)2 + (1 + tan A)2
= (1 + tan2A – 2 tan A) + (1 + tan2A + 2 tan A)
= 2(1 + tan2A)
= 2 sec2A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
If `sin theta = x , " write the value of cot "theta .`
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`