Advertisements
Advertisements
प्रश्न
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
उत्तर
L.H.S. = (1 – tan A)2 + (1 + tan A)2
= (1 + tan2A – 2 tan A) + (1 + tan2A + 2 tan A)
= 2(1 + tan2A)
= 2 sec2A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that cot2θ × sec2θ = cot2θ + 1
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ