Advertisements
Advertisements
प्रश्न
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
उत्तर
L.H.S. = cosec4 A – cosec2 A
= cosec2 A (cosec2 A – 1)
R.H.S. = cot4 A + cot2 A
= cot2 A (cot2 A + 1)
= (cosec2 A – 1) cosec2 A
Thus, L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2.
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
If tan θ × A = sin θ, then A = ?
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
sin(45° + θ) – cos(45° – θ) is equal to ______.