Advertisements
Advertisements
Question
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Solution
L.H.S. = cosec4 A – cosec2 A
= cosec2 A (cosec2 A – 1)
R.H.S. = cot4 A + cot2 A
= cot2 A (cot2 A + 1)
= (cosec2 A – 1) cosec2 A
Thus, L.H.S. = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`