Advertisements
Advertisements
Question
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Solution
Given : `cos theta + sin theta = sqrt(2) sin theta`
We have `( sin theta + cos theta )^2 + (sin theta - cos theta )^2 =2(sin^2 theta + cos^2 theta )`
`= > ( sqrt(2) sin theta )^2 + ( sin theta - cos theta ) ^2 = 2 `
`= > 2 sin^2 theta + ( sin theta - cos theta ) ^2 = 2`
`= > ( sin theta - cos theta ) ^2 = 2-2 sin^2 theta `
`= > ( sin theta - cos theta ) ^2 =2(1- sin^2 theta)`
`= > ( sin theta - cos theta ) ^2 = 2 cos^2 theta`
`= > ( sin theta - cos theta ) = sqrt(2) cos theta`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
tan θ cosec2 θ – tan θ is equal to
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ