Advertisements
Advertisements
प्रश्न
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
उत्तर
Given : `cos theta + sin theta = sqrt(2) sin theta`
We have `( sin theta + cos theta )^2 + (sin theta - cos theta )^2 =2(sin^2 theta + cos^2 theta )`
`= > ( sqrt(2) sin theta )^2 + ( sin theta - cos theta ) ^2 = 2 `
`= > 2 sin^2 theta + ( sin theta - cos theta ) ^2 = 2`
`= > ( sin theta - cos theta ) ^2 = 2-2 sin^2 theta `
`= > ( sin theta - cos theta ) ^2 =2(1- sin^2 theta)`
`= > ( sin theta - cos theta ) ^2 = 2 cos^2 theta`
`= > ( sin theta - cos theta ) = sqrt(2) cos theta`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.