Advertisements
Advertisements
प्रश्न
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
उत्तर
L.H.S. = `(cot A - 1)/(2 - sec^2A)`
= `(((1 - tan A))/tan A)/(1 + 1 - sec^2A)`
= `(((1 - tan A))/tan A)/(1 - tan^2A)`
= `(((1 - tan A))/(tan A))/((1 + tan A)(1 - tan A))`
= `(1/tan A)/(1 + tan A)`
= `cot A/(1 + tan A)` = R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
cos4 A − sin4 A is equal to ______.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.