Advertisements
Advertisements
प्रश्न
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
उत्तर
LHS = (sin2θ)2 + (cos2 θ)2 + 2 sin2θ cos2θ - 2 sin2θ cos2θ
= ( sin2θ + cos2θ )2 - 2 sin2θ cos2θ
= 1 - 2 sin2θ cos2θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
cosec4θ − cosec2θ = cot4θ + cot2θ
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
(sec θ + tan θ) . (sec θ – tan θ) = ?