Advertisements
Advertisements
Question
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Solution
LHS = (sin2θ)2 + (cos2 θ)2 + 2 sin2θ cos2θ - 2 sin2θ cos2θ
= ( sin2θ + cos2θ )2 - 2 sin2θ cos2θ
= 1 - 2 sin2θ cos2θ
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
If cos A + cos2A = 1, then sin2A + sin4 A = ?
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α