Advertisements
Advertisements
Question
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Solution
LHS = `(1 - tan^2 θ)/(cot^2 θ - 1)`
= `(1 - tan^2 θ)/(1/tan^2 θ - 1)`
= `((1 - tan^2 θ)/(1 - tan^2 θ)/tan^2 θ) `
= tan2 θ
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
If sec θ = `25/7`, then find the value of tan θ.
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1