Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
उत्तर
LHS = `(1 - tan^2 θ)/(cot^2 θ - 1)`
= `(1 - tan^2 θ)/(1/tan^2 θ - 1)`
= `((1 - tan^2 θ)/(1 - tan^2 θ)/tan^2 θ) `
= tan2 θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.