हिंदी

If `Sec Theta + Tan Theta = P,` Prove that (I)`Sec Theta = 1/2 ( P+1/P) (Ii) Tan Theta = 1/2 ( P- 1/P) (Iii) Sin Theta = (P^2 -1)/(P^2+1)` - Mathematics

Advertisements
Advertisements

प्रश्न

If `sec theta + tan theta = p,` prove that

(i)`sec theta = 1/2 ( p+1/p)   (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`

उत्तर

(i) We have , `sec theta + tan theta = p`          ....................(1)

`⇒ (sec theta + tan theta )/1 xx (sec theta - tan theta )/( sec theta - tan theta ) = p`

`⇒ (sec ^2 theta - tan^2 theta )/( sec theta - tan theta) = p`

`⇒ 1/ (sec theta - tan theta ) =p`

`⇒ sec theta - tan theta = 1/ p`       .........................(2)

Adding (1) and (2) , We get

2` sec theta = p + 1/p`

`⇒ sec theta = 1/2 ( p+1/p)`

(ii) subtracting (2) feom (1) , We get  

`2 tan theta = (p - 1/p)`

`⇒ tan theta = 1/2 ( p-1/p)`

(iii) Using  (i) and (ii) , We get 

`sin theta = tantheta/ sec theta`

                =`(1/2(p-1/p))/(1/2 (p+1/p)`

               =`(((p^2-1)/p))/(((p^2+1))/p)`

∴ `sin theta = (p^2-1)/(p^2 +1)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 2

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 2 | Q 13

संबंधित प्रश्न

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


9 sec2 A − 9 tan2 A = ______.


As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2


`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 


Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`


Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle. 


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×