Advertisements
Advertisements
प्रश्न
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
उत्तर
(i) We have , `sec theta + tan theta = p` ....................(1)
`⇒ (sec theta + tan theta )/1 xx (sec theta - tan theta )/( sec theta - tan theta ) = p`
`⇒ (sec ^2 theta - tan^2 theta )/( sec theta - tan theta) = p`
`⇒ 1/ (sec theta - tan theta ) =p`
`⇒ sec theta - tan theta = 1/ p` .........................(2)
Adding (1) and (2) , We get
2` sec theta = p + 1/p`
`⇒ sec theta = 1/2 ( p+1/p)`
(ii) subtracting (2) feom (1) , We get
`2 tan theta = (p - 1/p)`
`⇒ tan theta = 1/2 ( p-1/p)`
(iii) Using (i) and (ii) , We get
`sin theta = tantheta/ sec theta`
=`(1/2(p-1/p))/(1/2 (p+1/p)`
=`(((p^2-1)/p))/(((p^2+1))/p)`
∴ `sin theta = (p^2-1)/(p^2 +1)`
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
9 sec2 A − 9 tan2 A = ______.
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`