Advertisements
Advertisements
प्रश्न
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
उत्तर
(i) We have , `sec theta + tan theta = p` ....................(1)
`⇒ (sec theta + tan theta )/1 xx (sec theta - tan theta )/( sec theta - tan theta ) = p`
`⇒ (sec ^2 theta - tan^2 theta )/( sec theta - tan theta) = p`
`⇒ 1/ (sec theta - tan theta ) =p`
`⇒ sec theta - tan theta = 1/ p` .........................(2)
Adding (1) and (2) , We get
2` sec theta = p + 1/p`
`⇒ sec theta = 1/2 ( p+1/p)`
(ii) subtracting (2) feom (1) , We get
`2 tan theta = (p - 1/p)`
`⇒ tan theta = 1/2 ( p-1/p)`
(iii) Using (i) and (ii) , We get
`sin theta = tantheta/ sec theta`
=`(1/2(p-1/p))/(1/2 (p+1/p)`
=`(((p^2-1)/p))/(((p^2+1))/p)`
∴ `sin theta = (p^2-1)/(p^2 +1)`
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Choose the correct alternative:
1 + cot2θ = ?
Choose the correct alternative:
sec2θ – tan2θ =?
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
If 2sin2β − cos2β = 2, then β is ______.
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.