Advertisements
Advertisements
प्रश्न
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
उत्तर
4 cos2 A – 3 = 0
`=>` 4 cos2 A = 3
`=> cos^2A = 3/4`
`=> cosA = sqrt3/2`
We know cos 30° `= sqrt(3)/2`
So, A = 30°
L.H.S. = cos3 A = cos 90° = 0
R.H.S. = 4 cos3 A – 3 cos A
= 4 cos3 30° – 3 cos 30°
= `4(sqrt3/2)^3 - 3(sqrt3/2)`
= `(3sqrt3)/2 - (3sqrt3)/2`
= 0
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
If 2sin2θ – cos2θ = 2, then find the value of θ.