मराठी

If 2sin2θ – cos2θ = 2, then find the value of θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If 2sin2θ – cos2θ = 2, then find the value of θ.

बेरीज

उत्तर

Given,

2sin2θ – cos2θ = 2

⇒ 2sin2θ – (1 – sin2θ) = 2  ...[∵ sin2θ + cos2θ = 1]

⇒ 2sin2θ + sin2θ – 1 = 2

⇒ 3sin2θ = 3

⇒ sin2θ = 1

⇒ sinθ = 1 = sin 90°  ...[∵ sin 90° = 1]

∴ θ = 90°

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 12 | पृष्ठ ९५

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identities

`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) =  (1 + sin^2 theta)/(1 - sin^2 theta)`


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


If tanθ `= 3/4` then find the value of secθ.


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ


`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


Prove that sec2θ – cos2θ = tan2θ + sin2θ


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×