Advertisements
Advertisements
प्रश्न
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
उत्तर
L.H.S = `costheta/(1 + sintheta)`
= `costheta/(1 + sintheta) xx (1 - sintheta)/(1 - sintheta)` ......[On rationalising the denominator]
= `(costheta(1 - sintheta))/(1 - sin^2theta)`
= `(costheta(1 - sintheta))/(cos^2theta)` ......`[(because sin^2theta +cos^2theta = 1),(therefore 1 -sin^2theta = cos^2theta)]`
= `(1 - sintheta)/costheta`
= R.H.S
∴ `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
APPEARS IN
संबंधित प्रश्न
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If tanθ `= 3/4` then find the value of secθ.
Define an identity.
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
\[\frac{x^2 - 1}{2x}\] is equal to
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.