मराठी

If sin θ + cos θ = 3, then prove that tan θ + cot θ = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1

बेरीज

उत्तर

sin θ + cos θ = `sqrt(3)`

Squaring on both sides

(sin θ + cos θ)2 = `(sqrt(3))^2`

sin2 θ + cos2 θ + 2 sin θ cos θ = 3

1 + 2 sin θ cos θ = 3

2 sin θ cos θ = 3 – 1

2 sin θ cos θ = 2

∴ sin θ cos θ = 1

L.H.S = tan θ + cot θ

= `sin theta/cos theta + cos theta/sin theta`

= `(sin^2 theta + cos^2 theta)/(sin theta cos theta)`

= `1/(sin theta cos theta)`

= `1/1` ......(sin θ cos θ = 1)

= 1

⇒ tan θ + cot θ = 1

L.H.S = R.H.S

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Exercise 6.1 [पृष्ठ २५०]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
पाठ 6 Trigonometry
Exercise 6.1 | Q 7. (i) | पृष्ठ २५०

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


cosec4θ − cosec2θ = cot4θ + cot2θ


`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`


\[\frac{x^2 - 1}{2x}\] is equal to 


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


Prove that:

tan (55° + x) = cot (35° – x)


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


Choose the correct alternative:

cot θ . tan θ = ?


If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ


If tan α + cot α = 2, then tan20α + cot20α = ______.


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×