Advertisements
Advertisements
प्रश्न
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
उत्तर
sin θ + cos θ = `sqrt(3)`
Squaring on both sides
(sin θ + cos θ)2 = `(sqrt(3))^2`
sin2 θ + cos2 θ + 2 sin θ cos θ = 3
1 + 2 sin θ cos θ = 3
2 sin θ cos θ = 3 – 1
2 sin θ cos θ = 2
∴ sin θ cos θ = 1
L.H.S = tan θ + cot θ
= `sin theta/cos theta + cos theta/sin theta`
= `(sin^2 theta + cos^2 theta)/(sin theta cos theta)`
= `1/(sin theta cos theta)`
= `1/1` ......(sin θ cos θ = 1)
= 1
⇒ tan θ + cot θ = 1
L.H.S = R.H.S
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
cosec4θ − cosec2θ = cot4θ + cot2θ
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
\[\frac{x^2 - 1}{2x}\] is equal to
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Prove that:
tan (55° + x) = cot (35° – x)
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Choose the correct alternative:
cot θ . tan θ = ?
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
If tan α + cot α = 2, then tan20α + cot20α = ______.
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ