Advertisements
Advertisements
प्रश्न
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
उत्तर
L.H.S:`(1+(cos A)/(sinA)-1/(sinA))(1+(sinA)/(cosA)+1/(cosA))`
=`((sinA+cosA-1)/sinA)((cosA+sinA+1)/(cos A))`
=`((sinA+cosA)^2-(1)^2)/(sin A. cos A)`
=`(sin^2A +cos^2A+2sinA.cosA-1)/(sinA.cosA)`
=`(1+2sinA.cosA-1)/(sinA.cosA)`
=2
Hence, L.H.S =R.H.S.
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
9 sec2 A − 9 tan2 A is equal to
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
tan θ cosec2 θ – tan θ is equal to
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
If cosA + cos2A = 1, then sin2A + sin4A = 1.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
sec θ when expressed in term of cot θ, is equal to ______.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ