Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
उत्तर
In the given question, we need to prove `(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Here, we will first solve the LHS.
Now using `tan theta = sin theta/cos theta` and `cot theta = cos theta/sin theta` we get
`tan^2 A/(1 + tan^2 A) + cot^2 A/(1 + cot^2 A) = ((sin^2 A/cos^2 A))/((1 + sin^2 A/cos^2 A)) + ((cos^2 A/sin^2 A))/((1 + cos^2 A/sin^2 A))`
`= ((sin^2 A/cos^2 A))/(((cos^2 + sin^2 A)/cos^2 A)) + ((cos^2 A/sin^2 A))/(((sin^2 A + cos^2 A)/sin^2 A))`
`= ((sin^2 A/cos^2 A))/((1/cos^2 A)) + ((cos^2 A/sin^2 A))/((1/(sin^2 A)))` (using `sin^2 theta + cos^2 theta = 1`)
On further solving by taking the reciprocal of the denominator, we get,
`(sin^2 A/cos^2 A)/(1/cos^2 A) + (cos^2 A/sin^2 A)/(1/sin^2 A) = ((sin^2 A)/(cos^2 A)) (cos^2 A/1) + (cos^2 A/sin^2 A)(sin^2 A/1)`
`= sin^2 A + cos^2 A` (Using `sin^2 theta + cos^2 theta = 1`)
= 1
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
(i)` (1-cos^2 theta )cosec^2theta = 1`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
If tanθ `= 3/4` then find the value of secθ.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Find the value of sin 30° + cos 60°.
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.