मराठी

Prove the Following Trigonometric Identities. (Tan^2 A)/(1 + Tan^2 A) + (Cot^2 A)/(1 + Cot^2 A) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`

उत्तर

In the given question, we need to prove `(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`

Here, we will first solve the LHS.

Now using `tan theta = sin theta/cos theta` and `cot theta = cos theta/sin theta` we get

`tan^2 A/(1 + tan^2 A) + cot^2 A/(1 + cot^2 A) = ((sin^2 A/cos^2 A))/((1 + sin^2 A/cos^2 A)) + ((cos^2 A/sin^2 A))/((1 + cos^2 A/sin^2 A))`

`= ((sin^2 A/cos^2 A))/(((cos^2 + sin^2 A)/cos^2 A)) + ((cos^2 A/sin^2 A))/(((sin^2 A + cos^2 A)/sin^2 A))`

`= ((sin^2 A/cos^2 A))/((1/cos^2 A)) + ((cos^2 A/sin^2 A))/((1/(sin^2  A)))`    (using `sin^2 theta + cos^2 theta = 1`)

On further solving by taking the reciprocal of the denominator, we get,

`(sin^2 A/cos^2 A)/(1/cos^2 A) + (cos^2 A/sin^2 A)/(1/sin^2 A) = ((sin^2 A)/(cos^2 A)) (cos^2 A/1) + (cos^2 A/sin^2 A)(sin^2 A/1)`

`= sin^2 A + cos^2 A`        (Using `sin^2 theta + cos^2 theta = 1`)

= 1

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 45 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.


If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.


Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Show that : tan 10° tan 15° tan 75° tan 80° = 1


Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`


(i)` (1-cos^2 theta )cosec^2theta = 1`


`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`


`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`


`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`


Show that none of the following is an identity: 

`sin^2 theta + sin  theta =2`


If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


If tanθ `= 3/4` then find the value of secθ.


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


Prove the following identity : 

`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`


Find the value of sin 30° + cos 60°.


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`


If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×