मराठी

`(Sectheta- Tan Theta)/(Sec Theta + Tan Theta) = ( Cos ^2 Theta)/( (1+ Sin Theta)^2)` - Mathematics

Advertisements
Advertisements

प्रश्न

`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`

उत्तर

     LHS= `(sectheta- tan theta)/(sec theta + tan theta)`

          = `(1/cos theta-sin theta/cos theta)/(1/cos theta+ sin theta/cos theta)`

         =`((1-sin theta)/cos theta)/((1+ sin theta)/cos theta)`

         =`(1-sin theta)/(1+ sin theta)`

        =`((1-sin theta) (1+ sin theta))/( (1+ sin theta )(1+ sin theta))     {"Dividing the numerator and
denominator by"(1 + cos theta)}`

        =`((1-sin^2 theta))/((1+ sin theta)^2)`

        =`cos^2 theta/(1+ sin theta)^2`

        = RHS

 

 

 

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 20.2

संबंधित प्रश्‍न

Prove that `cosA/(1+sinA) + tan A =  secA`


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


Prove the following identities:

`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


Prove that:

`cot^2A/(cosecA - 1) - 1 = cosecA`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


If `sec theta + tan theta = p,` prove that

(i)`sec theta = 1/2 ( p+1/p)   (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


Write the value of cos1° cos 2°........cos180° .


\[\frac{x^2 - 1}{2x}\] is equal to 


The value of sin2 29° + sin2 61° is


Prove the following identity : 

`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


If x sin3θ + y cos3 θ = sin θ cos θ  and x sin θ = y cos θ , then show that x2 + y2 = 1.


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


If cos A + cos2A = 1, then sin2A + sin4 A = ?


If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×