Advertisements
Advertisements
प्रश्न
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
उत्तर
LHS= `(sectheta- tan theta)/(sec theta + tan theta)`
= `(1/cos theta-sin theta/cos theta)/(1/cos theta+ sin theta/cos theta)`
=`((1-sin theta)/cos theta)/((1+ sin theta)/cos theta)`
=`(1-sin theta)/(1+ sin theta)`
=`((1-sin theta) (1+ sin theta))/( (1+ sin theta )(1+ sin theta)) {"Dividing the numerator and
denominator by"(1 + cos theta)}`
=`((1-sin^2 theta))/((1+ sin theta)^2)`
=`cos^2 theta/(1+ sin theta)^2`
= RHS
APPEARS IN
संबंधित प्रश्न
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Write the value of cos1° cos 2°........cos180° .
\[\frac{x^2 - 1}{2x}\] is equal to
The value of sin2 29° + sin2 61° is
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A