Advertisements
Advertisements
प्रश्न
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
उत्तर
`cot^2A/(cosecA - 1) - 1`
= `(cot^2A - cosecA + 1)/(cosecA - 1)`
= `(-cosecA + cosec^2A)/(cosecA - 1)`
= `(cosecA(cosecA - 1))/(cosecA - 1)`
= cosec A
APPEARS IN
संबंधित प्रश्न
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
(sec θ + tan θ) . (sec θ – tan θ) = ?
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3