Advertisements
Advertisements
प्रश्न
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
उत्तर
`cot^2A/(cosecA - 1) - 1`
= `(cot^2A - cosecA + 1)/(cosecA - 1)`
= `(-cosecA + cosec^2A)/(cosecA - 1)`
= `(cosecA(cosecA - 1))/(cosecA - 1)`
= cosec A
APPEARS IN
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?