Advertisements
Advertisements
प्रश्न
Prove that:
`cosA/(1 + sinA) = secA - tanA`
उत्तर
`cosA/(1+sinA)`
= `cosA/(1 + sinA) xx (1 - sinA)/(1 - sinA)`
= `(cosA(1 - sinA))/(1 - sin^2A)`
= `(cosA(1 - sinA))/(cos^2A)`
= `(1-sinA)/cosA`
= sec A – tan A
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`