Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
उत्तर
L.H.S. = `cos^2 A + 1/(1 + cot^2 A)`
= `cos^2 A + 1/("cosec"^2 A) ...[1 + cot^2A = "cosec"^2 A]`
= `cos^2 A + sin^2 A ...[1/("cosec" A) = sin A]`
= `cos^2 A + sin^2 A`
= 1 (R.H.S.) ...`[sin^2 A + cos^2A = 1]`
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
cosec4θ − cosec2θ = cot4θ + cot2θ
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Simplify : 2 sin30 + 3 tan45.
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
sec4 A − sec2 A is equal to
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove that sec2θ − cos2θ = tan2θ + sin2θ
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S