हिंदी

Prove the Following Trigonometric Identities Cos^2 a + 1/(1 + Cos^2 A) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identity.

`cos^2 A + 1/(1 + cot^2 A) = 1`

योग

उत्तर

L.H.S. = `cos^2 A + 1/(1 + cot^2 A)`

= `cos^2 A + 1/("cosec"^2 A)        ...[1 + cot^2A = "cosec"^2 A]`

= `cos^2 A + sin^2 A     ...[1/("cosec" A) = sin A]`

= `cos^2 A + sin^2 A`

= 1  (R.H.S.)       ...`[sin^2 A + cos^2A = 1]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 9 | पृष्ठ ४३

संबंधित प्रश्न

If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.


Prove that:

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


Prove the following identities:

`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`


`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`


cosec4θ − cosec2θ = cot4θ + cot2θ


`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


If sinθ = `11/61`, find the values of cosθ using trigonometric identity.


Simplify : 2 sin30 + 3 tan45.


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


sec4 A − sec2 A is equal to


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


Prove that sec2θ − cos2θ = tan2θ + sin2θ


Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×