Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
उत्तर
We know that,
`sin^2 A + cos^2 A = 1`
`sec^2 A - tan^2A = 1`
So
`sin^2 A + 1/(1 + tan^2 A) = sin^2 A + 1/sec^2 A`
`= sin^2 A + (1/sec A)^2`
`= sin^2 A + (cos A)^2`
`= sin^2 A + cos^2 A`
= 1
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove the following identity :
tanA+cotA=secAcosecA
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
Choose the correct alternative:
Which is not correct formula?
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Eliminate θ if x = r cosθ and y = r sinθ.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0