हिंदी

Prove the Following Trigonometric Identities. Sin^2 a + 1/(1 + Tan^2 A) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`sin^2 A + 1/(1 + tan^2 A) = 1`

उत्तर

We know that,

`sin^2 A + cos^2 A = 1`

`sec^2 A - tan^2A = 1`

So

`sin^2 A + 1/(1 + tan^2 A) = sin^2 A + 1/sec^2 A`

`= sin^2 A + (1/sec A)^2`

`= sin^2 A + (cos A)^2`

`= sin^2 A + cos^2 A`

= 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 10 | पृष्ठ ४३

संबंधित प्रश्न

If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`


`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`


If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`


The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 


If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


Prove the following identity :

tanA+cotA=secAcosecA 


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


Choose the correct alternative:

Which is not correct formula?


If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.


Eliminate θ if x = r cosθ and y = r sinθ.


Prove the following identity:

(sin2θ – 1)(tan2θ + 1) + 1 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×