हिंदी

If a Cos `Theta + B Sin Theta = M and a Sin Theta - B Cos Theta = N , "Prove that "( M^2 + N^2 ) = ( A^2 + B^2 )` - Mathematics

Advertisements
Advertisements

प्रश्न

If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`

उत्तर

We have `m^2 + n^2 = [(a  cos theta + b sin theta)^2 + ( a sin theta - b cos theta )^2 ]`

                               =` ( a^2 cos^2 theta + b^2 sin ^2 theta + 2 ab cos theta sin theta)`

                              +`(a^2 sin^2 theta + b^2 cos^2 theta -2ab cos theta sin theta)`

                            =`a^2 cos^2 theta + b^2 sin^2 theta + a^2 sin^2 theta + b^2 vos^2 theta`

                            =`(a^2 cos^2 theta + b^2 sin^2 theta) + ( b^2 cos^2 theta + b^2 sin^2 theta )`

                            =`a^2 (cos^2 theta + sin^2 theta ) + b^2 ( cos^2 theta + sin^2 theta )`

                             =`a^2 + b^2    [∵ sin^2 + cos^2 = 1]`

  Hence , `m^2 + n^2 = a^2 + b^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 2

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 2 | Q 1

संबंधित प्रश्न

Express the ratios cos A, tan A and sec A in terms of sin A.


Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Prove that:

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove the following identities:

cosec4 A (1 – cos4 A) – 2 cot2 A = 1


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to 


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity : 

`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity:

L.H.S = `square`

= `square/sintheta + sintheta/costheta`

= `(cos^2theta + sin^2theta)/square`

= `1/(sintheta*costheta)`     ......`[cos^2theta + sin^2theta = square]`

= `1/sintheta xx 1/square`

= `square`

= R.H.S


If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×