Advertisements
Advertisements
प्रश्न
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
उत्तर
We have `m^2 + n^2 = [(a cos theta + b sin theta)^2 + ( a sin theta - b cos theta )^2 ]`
=` ( a^2 cos^2 theta + b^2 sin ^2 theta + 2 ab cos theta sin theta)`
+`(a^2 sin^2 theta + b^2 cos^2 theta -2ab cos theta sin theta)`
=`a^2 cos^2 theta + b^2 sin^2 theta + a^2 sin^2 theta + b^2 vos^2 theta`
=`(a^2 cos^2 theta + b^2 sin^2 theta) + ( b^2 cos^2 theta + b^2 sin^2 theta )`
=`a^2 (cos^2 theta + sin^2 theta ) + b^2 ( cos^2 theta + sin^2 theta )`
=`a^2 + b^2 [∵ sin^2 + cos^2 = 1]`
Hence , `m^2 + n^2 = a^2 + b^2`
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.