Advertisements
Advertisements
प्रश्न
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
उत्तर
We have `x^2 - y^2 = [( a sec theta + b tan theta )^2 - ( a tan theta + b sec theta )^2]`
=`(a^2 sec^2 theta + b^2 tan^2 theta + 2 ab sec theta tan theta)`
` -(a^2 tan^2 theta + b^2 sec^2 theta + 2 ab tan theta sec theta)`
=`a^2 sec^2 theta + b^2 tan^2 theta - a^2 tan^2 theta - b^2 sec^2 theta`
=`(a^2 sec^2 theta - a^2 tan^2 theta)-( b^2 sec^2 theta - b^2 tan ^2 theta)`
=`a^2 ( sec^2 theta - tan^2 theta )-b^2 ( sec^2 theta - tan^2 theta)`
=`a^2 - b^2 [∵ sec^2 theta - tan^2 theta =1]`
Hence, `x^2 - y^2 = a^2 - b^2`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
Prove that cot2θ × sec2θ = cot2θ + 1
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.