हिंदी

If X= a Sec `Theta + B Tan Theta and Y = a Tan Theta + B Sec Theta ,"Prove That" (X^2 - Y^2 )=(A^2 -b^2)` - Mathematics

Advertisements
Advertisements

प्रश्न

If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`

उत्तर

We have `x^2 - y^2 = [( a sec theta + b tan theta )^2 - ( a tan  theta + b sec theta )^2]`

                              =`(a^2 sec^2 theta + b^2 tan^2 theta + 2 ab sec theta tan theta)`

                           `  -(a^2 tan^2 theta + b^2 sec^2 theta + 2 ab tan theta sec theta)`

                           =`a^2 sec^2 theta + b^2 tan^2 theta - a^2 tan^2 theta - b^2 sec^2 theta`

                          =`(a^2 sec^2 theta - a^2 tan^2 theta)-( b^2 sec^2 theta - b^2 tan ^2 theta)`

                        =`a^2 ( sec^2 theta - tan^2 theta )-b^2 ( sec^2 theta - tan^2 theta)`

                       =`a^2 - b^2                     [∵ sec^2 theta - tan^2 theta =1]`

 Hence, `x^2 - y^2 = a^2 - b^2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 2

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 2 | Q 2

संबंधित प्रश्न

 
 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)` 

[Hint : Simplify LHS and RHS separately.]

 
 

Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identities.

`(1 + cos A)/sin^2 A = 1/(1 - cos A)`


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ? 


Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1


Prove that cot2θ × sec2θ = cot2θ + 1


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×