Advertisements
Advertisements
प्रश्न
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
उत्तर
Given: `sin θ=4/5`
We know that,
`sin^2 θ+cos^2=1`
⇒ `(4/5)^2+cos^2 θ=1`
⇒ `16/25+cos^2 θ=1`
⇒ `cos^2θ=1-16/25`
⇒`cos^2θ=9/25`
⇒`cosθ=3/5`
We have,
`cos θ+cosec θ=cosθ/sin θ+1/sinθ`
= `(3/5)/(4/5)+1/(4/5)`
= `3/4+5/4`
= `2`
Hence, the value of cotθ + cosecθ is 2.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Write the value of tan1° tan 2° ........ tan 89° .
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.