Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
उत्तर
Given : `cos A + cos^2 A = 1`
we have to prove `sin^2 A + sin^4 A = 1`
Now
`cos A + cos^2 A = 1`
`=>cos A = 1 - cos^2 A`
`=> cos A = sin^2 A`
`=> sin^2 A = cos A`
Therefore, we have
`sin^2 A + sin^4 A = cos A + (cos A)^2`
`= cos A + cos^`2 A`
= 1
Hence proved.
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?
(1 – cos2 A) is equal to ______.