हिंदी

Prove the Following Trigonometric Identities. Tan Theta + 1/Tan Theta = Sec Theta Cosec Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`

उत्तर

We know that `sec^2 theta - tan^2 theta = 1`

So,

`tan theta + 1/tan theta = (tan^2 theta + 1)/tan theta`

`= sec^2 theta/tan theta`

`= sec theta sec theta/tan theta`

`= sec theta = (1/cos theta)/(sin theta/cos theta)`

`= sec theta cosec theta`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 6 | पृष्ठ ४३

संबंधित प्रश्न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.


Choose the correct alternative:

1 + cot2θ = ? 


If cos A + cos2A = 1, then sin2A + sin4 A = ?


The value of tan A + sin A = M and tan A - sin A = N.

The value of `("M"^2 - "N"^2) /("MN")^0.5`


Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`


Statement 1: sin2θ + cos2θ = 1

Statement 2: cosec2θ + cot2θ = 1

Which of the following is valid?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×