Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
उत्तर
We know that `sec^2 theta - tan^2 theta = 1`
So,
`tan theta + 1/tan theta = (tan^2 theta + 1)/tan theta`
`= sec^2 theta/tan theta`
`= sec theta sec theta/tan theta`
`= sec theta = (1/cos theta)/(sin theta/cos theta)`
`= sec theta cosec theta`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Choose the correct alternative:
1 + cot2θ = ?
If cos A + cos2A = 1, then sin2A + sin4 A = ?
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?