Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Solution
We know that `sec^2 theta - tan^2 theta = 1`
So,
`tan theta + 1/tan theta = (tan^2 theta + 1)/tan theta`
`= sec^2 theta/tan theta`
`= sec theta sec theta/tan theta`
`= sec theta = (1/cos theta)/(sin theta/cos theta)`
`= sec theta cosec theta`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Find A if tan 2A = cot (A-24°).
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If cosA + cos2A = 1, then sin2A + sin4A = 1.