Advertisements
Advertisements
Question
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Solution
We know that
`sec^2 theta - tan^2 theta = 1`
`cosec^2 theta - cot^2 theta = 1`
So,
`(sec^2 theta - 1)(cosec^2 theta - 1) = tan^2 theta xx cot^2 theta`
`= (tan theta xx cot theta)`
`= (tan theta xx 1/tan theta)^2`
`= (1)^2`
=1
APPEARS IN
RELATED QUESTIONS
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
cosec4θ − cosec2θ = cot4θ + cot2θ
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Write the value of tan10° tan 20° tan 70° tan 80° .
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
Simplify : 2 sin30 + 3 tan45.
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ