English

Prove the Following Trigonometric Identities Cosec6θ = Cot6θ + 3 Cot2θ Cosec2θ + 1 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1

Solution

We need to prove cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1

Solving the L.H.S, we get

`cosec^6 theta = (cosec^2 theta)^3`

`= (1 + cot^2 theta)^3`     .......`(1 + cot^2 theta = cosec^2 theta)`

Further using the identity `(a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2`  we get

`(1 + cot^2 theta)^3 = 1 + cot^6 theta + 3(1)^2 (cot^2 theta) + 3(1) (cot^2 theta)^2`

`= 1 + cot^6 theta + 3 cot^2 theta + 3 cot^4 theta`

`= 1 + cot^6 theta + 3 cot^2 theta (1 + cot^2 theta)`

`= 1 + cot^6 theta + 3 cot^2 theta cosec^2 theta`    `(using 1 + cot^2 theta = cosec^2 theta)`

Hence proved.

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 32 | Page 44

RELATED QUESTIONS

If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


Prove the following trigonometric identities.

`sin^2 A + 1/(1 + tan^2 A) = 1`


Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`


Prove the following trigonometric identities.

`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


Prove the following identities:

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`


`cosec theta (1+costheta)(cosectheta - cot theta )=1`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove the following identity : 

`(1 + tan^2θ)sinθcosθ = tanθ`


Without using trigonometric identity , show that :

`sin(50^circ + θ) - cos(40^circ - θ) = 0`


Prove the following identity:

(sin2θ – 1)(tan2θ + 1) + 1 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×